
ABB Lummus Global, Inc. Lummus Process Technology Randall Gas Technologies

82st Annual GPA Convention San Antonio, Texas

12-March-2003

A Review of the Basics for Superior Design

Hazem Haddad, Ph.D., PE

Jorge Foglietta, PE

ABB Lummus Global Inc

Lummus Process Technology - Randall Gas Technologies

Houston, Texas

2

Why Thermodynamic Analysis?

Minimum/Ideal Work

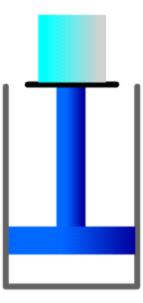
- With Actual Work known, it gives the process efficiency.
- Identifies areas in the process with large lost work or Operations that are "Highly Irreversible"

က

Introduction (...cont.)

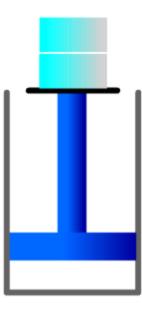
What is a reversible process?

- A reversible process is a process that undergoes a change in infinitesimally small steps such that, at all times, the system remains at equilibrium or infinitesimally away from equilibrium.
- All heat transfer is to or from the environment via a Carnot engine.
- A reversible process must produce useful work.

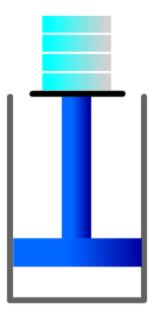

For a plant to be reversible

Every operation in the process has to be reversible

S



One Block Movie



Two Block Movie

Four Block Movie

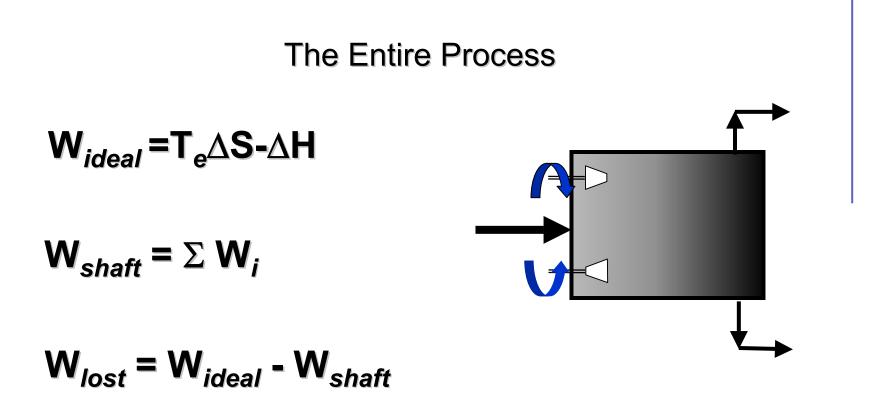
Types of Lost Work

- Chemical Lost Work: Irreversible chemical reactions.
- Heat Transfer Lost Work: Temperature gradient.
- Mass Transfer Lost Work: Mixing of streams with different composition.
- Momentum Lost Work: Pressure drop or irreversible change in pressure.

Ideal Work

For a work requiring process, this is the minimum work required to accomplish the process.

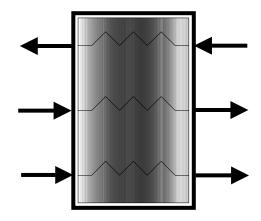
<u>Shaft Work</u>


This is the work of rotating shafts like compressors, expanders and pumps etc.

<u>Lost Work</u>

The difference between the Ideal and shaft work.

Thermodynamic Calculations

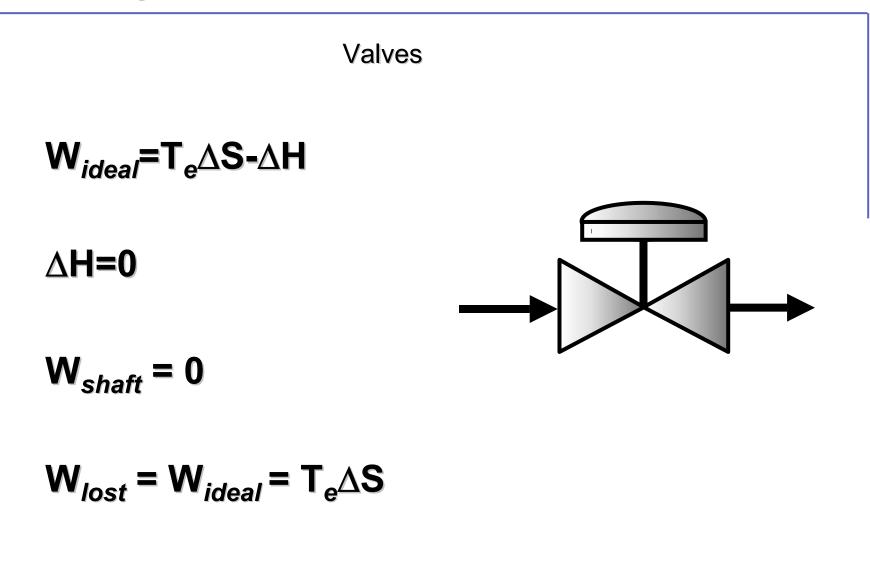

ABB

Heat Exchangers

∆H=0

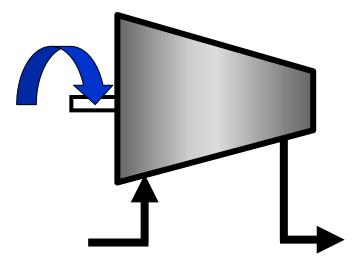
$$W_{shaft} = 0$$

Non Adiabatic Heat Exchangers and simplifying assumptions


Air Coolers

W_{ideal}=T_e∆S-∆H

$$W_{lost} = W_{ideal}$$

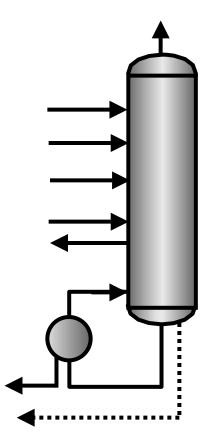


Compressors, pumps, expanders

W_{ideal}=T_e∆S-∆H

 $W_{shaft} = W_{actual}$

 $W_{lost} = W_{ideal} - W_{shaft}$

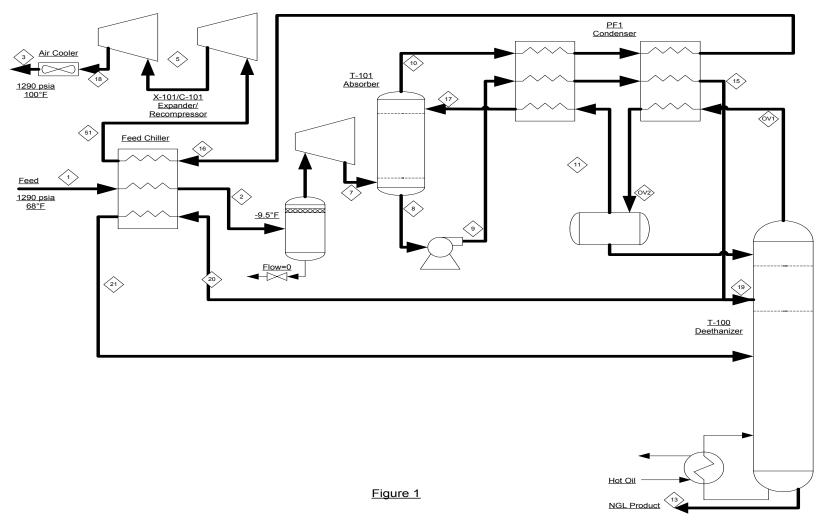

Distillation Columns

Isolate the column from the heat exchangers!

W_{ideal}=T_e∆S-∆H

∆H=0, W_{shaft} **= 0**

 $W_{ideal} = T_e \Delta S = W_{lost}$



- 16

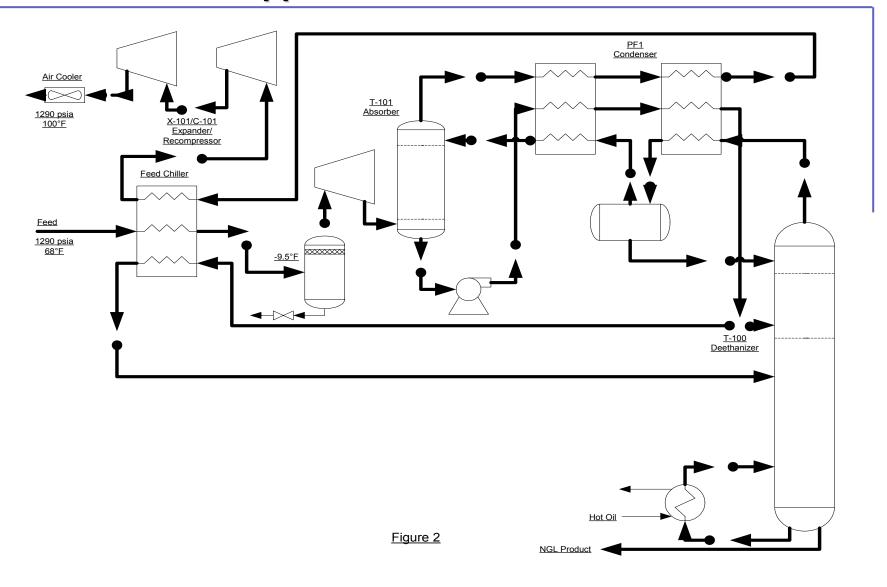
Applications to Gas Plants – C₃ Recovery

Conventional Propane Recovery

Randall Gas Technologies

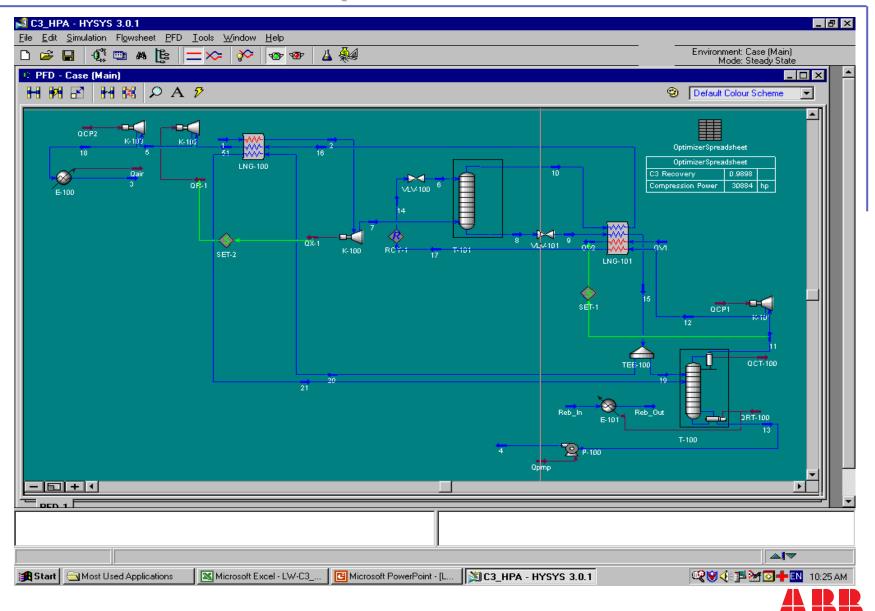
- 17

ABB Lummus Global Inc.


0

Conventional Propane Recovery

- Calculate the ideal and lost work for the entire process.
- Disconnect the process into individual adiabatic processes.
- Calculate the ideal and lost work for each individual operation.
- Add up the total and lost work as a check.



Recommended Approach

Simulation tools and Spreadsheets

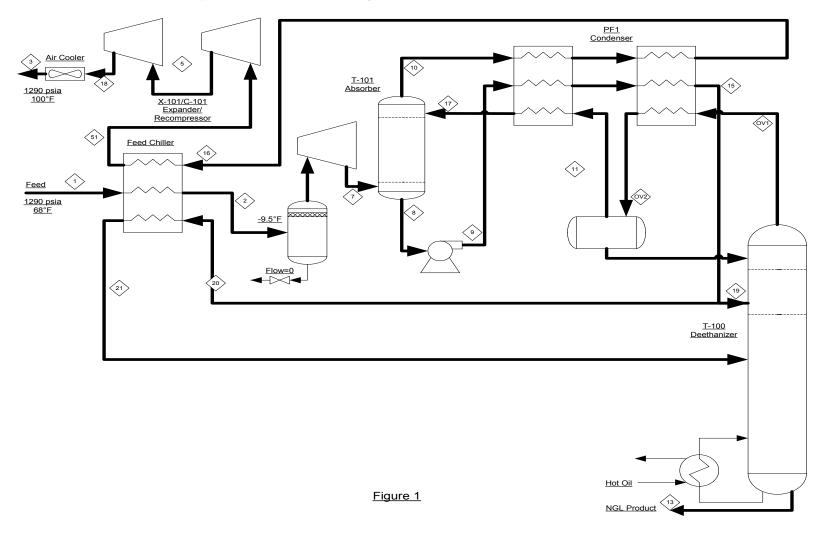
20

Simulation tools and Spreadsheets

	🖻 🖻 🗠 - 🍓	Σ ƒ≈ ᢓ↓ 🛍 🖾	♀ Arial	•	10 - B	IU≣≣	■ 国 \$ %,	. 108 +98 💷	译 🛛 • 🕭 • d
1									
B11 <u></u>	= 1 B	С	D	E	F	G	НІ		K L
A	D		U		Г	G		HYSYS v3.0.1 (B	
•		 Thermodyna 	amic Analy	sis of Proce	955		Project: Gas Plant	111313 VJ.0.1 (D	uliu 4002)
. I		: <u>RGT Design Guide</u>		313 01 1 100	633	Pr	roject No.: 12345		
		: C:\Data\Hysis Template					By: ENGR		
Randa			_				Date: 2/10/03		
Gas Technolog ABB Lummus Globa	Number of Ops	: 14 Select a	HYSYS Case		Calculat	-			
		-					Environment Temperatur	re: 80	۴
OVERALL:	(Coloct streams before	e using the "Calculate" bu	ttop)	Otionk does to the	oustain is	mpressor & pump)	Column 1 Nam	e• T-100	
UVERALL:	Inlet Streams	Outlet Streams		Energy Streat		Mactual (HP)	To SideR:	From SideR:	
	1		-5,841	QCP2		-30,914	IR1_In	IR1 Out	
1		4		QCP1					
1				Qpmp		Efficiency			
						18.9%]
							Column 2 Nam		
INDIVIDUAL:	Operation Name	Tuma	W and	W and	W and	% Total	To SideR:	From SideR:	1
	LNG-100	Type Ingop	W ideal (HP) 4,124	W _{shaft} (HP)	W lost (HP) 4,124	74.6%			
	K-100	expandop	12,641	9,344	3,296	11.7%			
	T-100	distillation	5,319	0,011	5,319	18.8%			
	VLV-101	valveop	1,086		1,086	3.8%	۱		;
	K-101	compressor	-2,886	-3,770	884	3.1%			
	T-101	absorber	732		732	2.6%			
	LNG-101	Ingop	3,511		3,511	12.4%			
	K-102	compressor	-7,477	-9,344	1,868	6.6%			
	K-103 E-100	compressor	-22,327 2,636	-27,114	4,787	16.9% 9.3%			
	E-100 P-100	coolerop pumpop	-22	-30	2,636 8	9.3% 0.0%			
	VLV-100	valveop	-22	-50	11	0.0%			
	E-101	heaterop	-3,226	-3,226	0	0.0%			
	TOTAL		-5,876	-34,140	28,264	100.0%			
Main /									
I 🕨 🕅 Main / ady									

Application to Gas Plants – C₃ Recovery

Thermodynamic Analysis of Conventional Propane Recovery


Equipment	W _{ideal}	W _{shaft}	W _{lost}	% of lost
Exchangers	11,805	0	11,805	27.9
Valves	43	0	43	0.1
Columns	6,842	0	6,842	16.2
Rotating Equipment	-25,652	-42,299	18,647	44.0
Air Cooler	5,014	0	5,014	11.8
Reboiler	-4,034	-4,034	0	0
Total	-5,981	-48,333	42,352	100.0

- 22

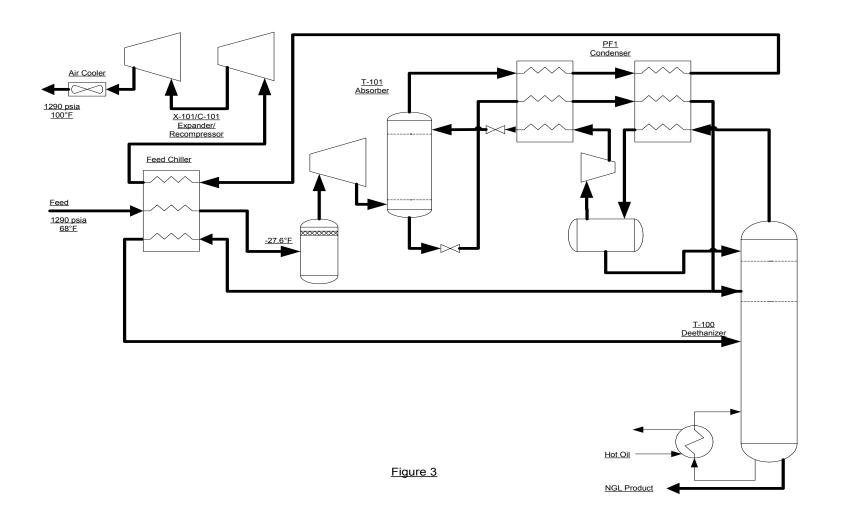
Applications to Gas Plants – C₃ Recovery

Conventional Propane Recovery

Randall Gas Technologies

- 23

ABB Lummus Global Inc.


0

The High Pressure Absorber - HPA

- Operate the absorber at high pressure (500 to 700 psia). This pressure is limited by the approach to critical conditions and the amount of refrigeration needed from the expander to keep the process self refrigerated.
- Install a compressor to compress the net deethanizer overhead.
- Eliminate the pump at the bottom of the absorber.

HPA for Propane Recovery

- 25

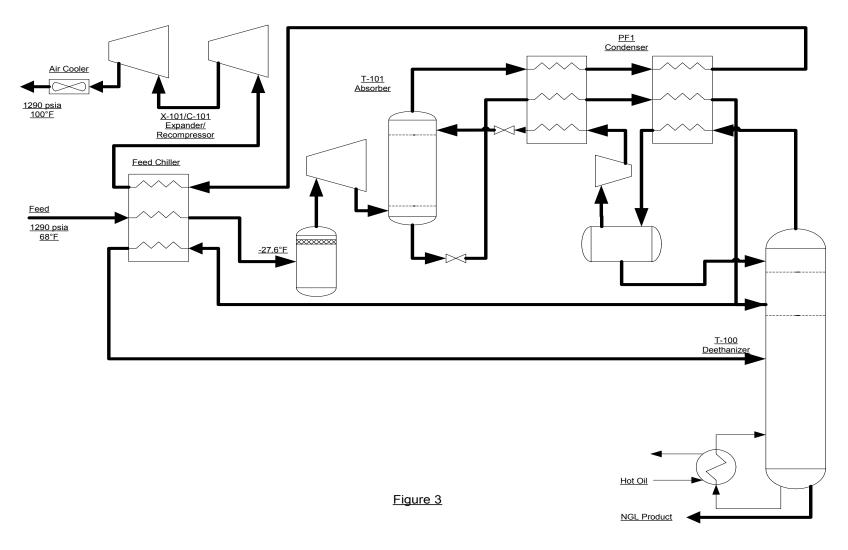
Application to Gas Plants – C₃ Recovery

Thermodynamic Analysis of the HPA Process for Propane Recovery

Equipment	W _{ideal}	W _{shaft}	W _{lost}	% of lost
Exchangers	7,634	0	7,634	27.0
Valves	1,097	0	1,097	3.9
Columns	6,051	0	6,051	21.4
Rotating Equipment	-20,071	-30,914	10,843	38.4
Air Cooler	2,636	0	2,636	10.5
Reboiler	-3,226	-3,226	0	9.3
Total	-5,876	-34,140	28,264	100.0

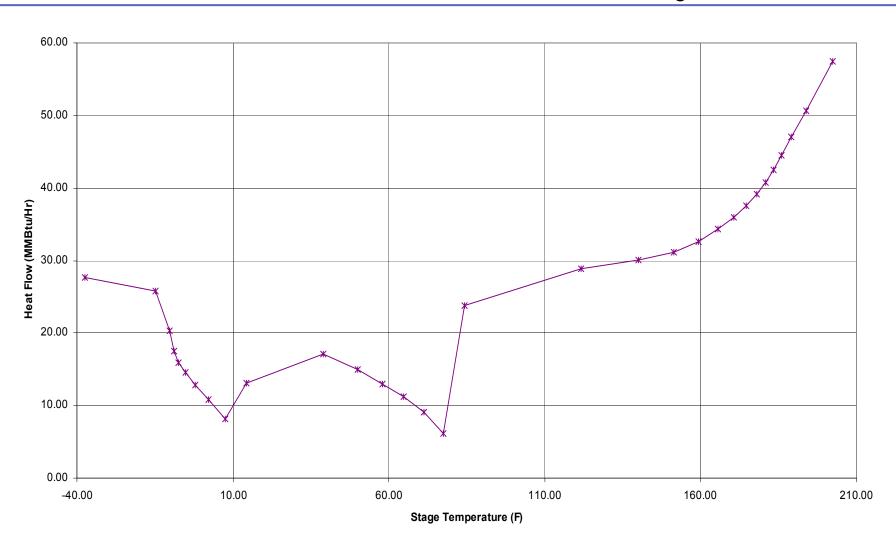
Comparison to Conventional Two-Tower Scheme

	Conventior	nal Scheme	HPA Scheme	
	Lost Work	Percent	Lost Work	Percent
Exchangers	11,805	27.9	7,634	27.0
Valves	43	0.1	1,097	3.9
Columns	6,842	16.2	6,051	21.4
Rotating Equipment	18,647	44.0	10,843	38.4
Air Cooler	5,014	11.8	2,636	10.5

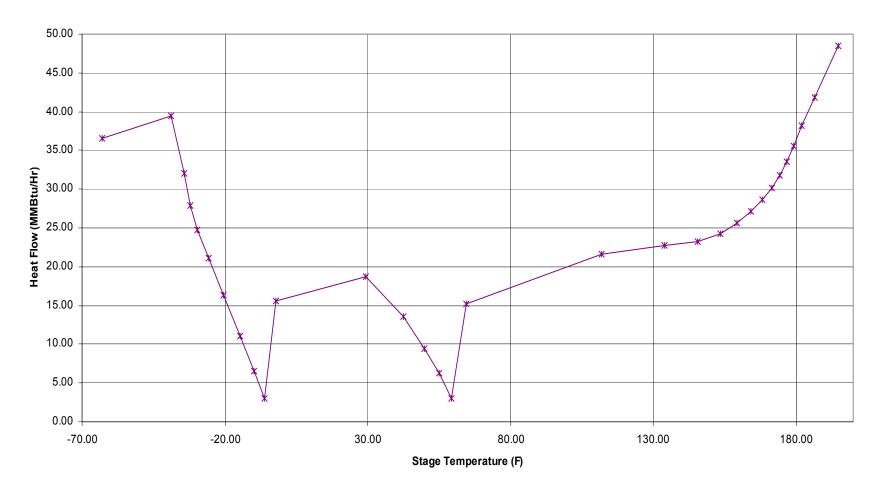

Total Lost Work	42,352	28,264	
Total Actual Work	44,299	30,914	

The High Pressure Absorber - HPA

With reasonable heat integration, if the temperature of the residue gas stream entering the recompressor is significantly colder than the temperature of the feed then the expander is generating excessive refrigeration and the absorber can be operated at higher pressure.

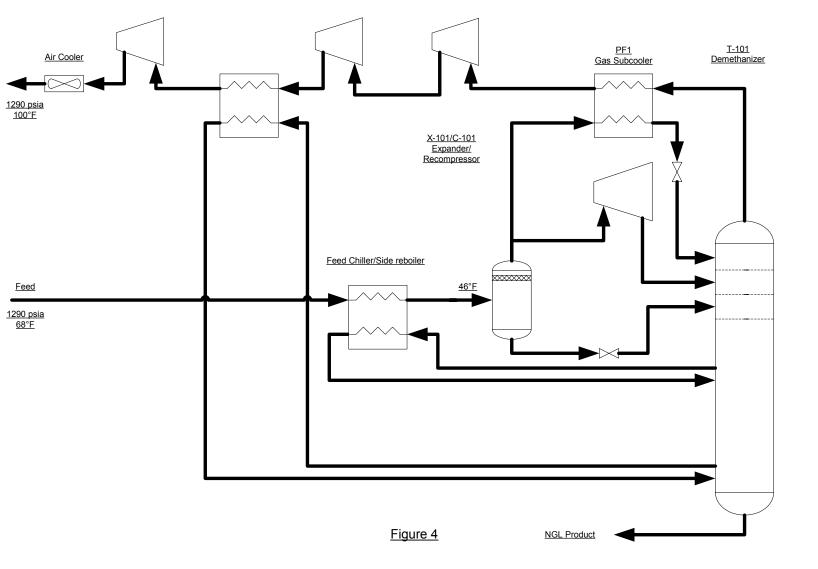


HPA for Propane Recovery



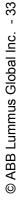
Deethanizer CGCC – Conventional C₃ Recovery

Deethanizer CGCC – HPA C₃ Recovery


Column Grand Composite Curve

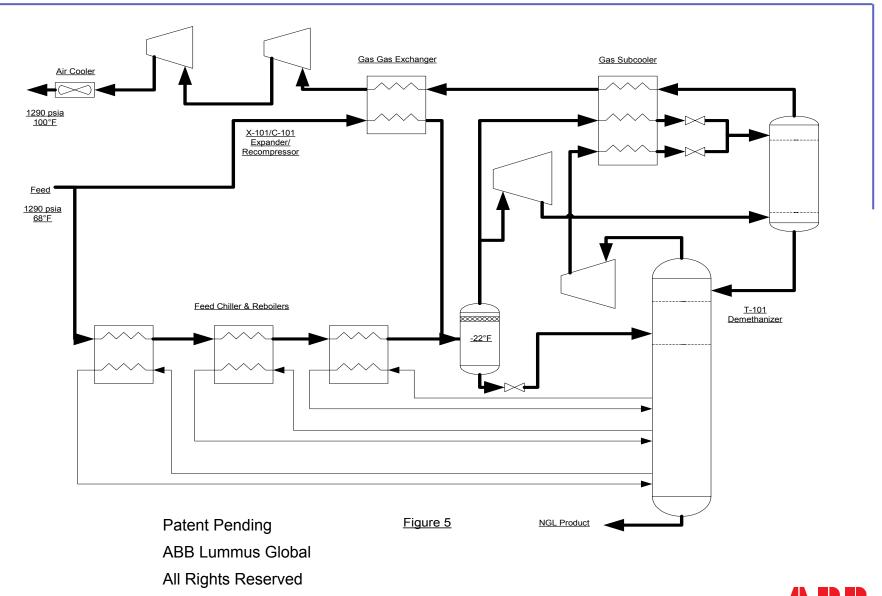
Application to Ethane Recovery

Conventional Ethane Recovery



32

Application to Gas Plants – C₂ Recovery


Thermodynamic Analysis of a Conventional Ethane Recovery Process

Equipment	W _{ideal}	W _{shaft}	W _{lost}	% of lost
Exchangers	5,773	0	5,773	15.2
Valves	4,184	0	4,184	11.0
Columns	6,539	0	6,539	17.2
Rotating Equipment	-30,383	-47,348	16,965	44.6
Air Cooler	4,573	0	4,573	12.0
Total	-9,313	-47,348	38,035	100.0

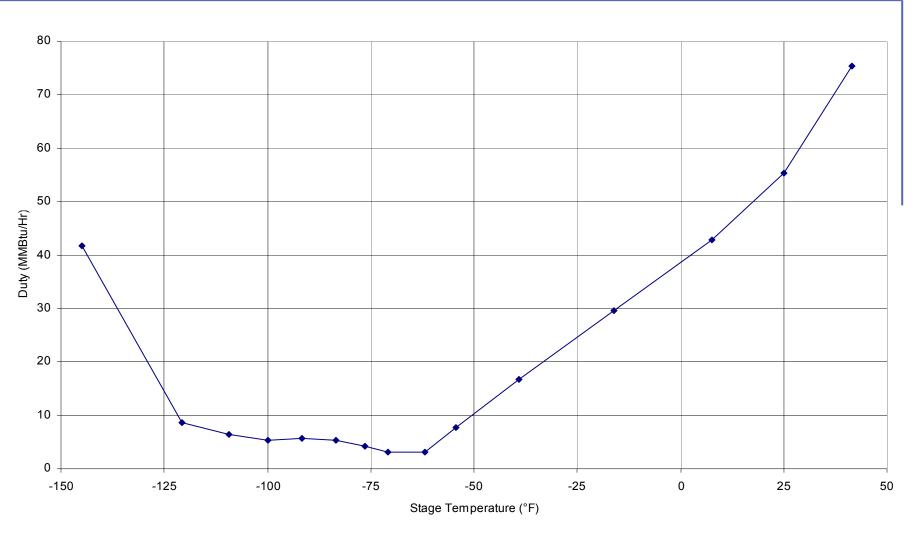
Application to Gas Plants – C₂ Recovery New Concept

© ABB Lummus Global Inc. - 34

Application to Gas Plants – C₂ Recovery

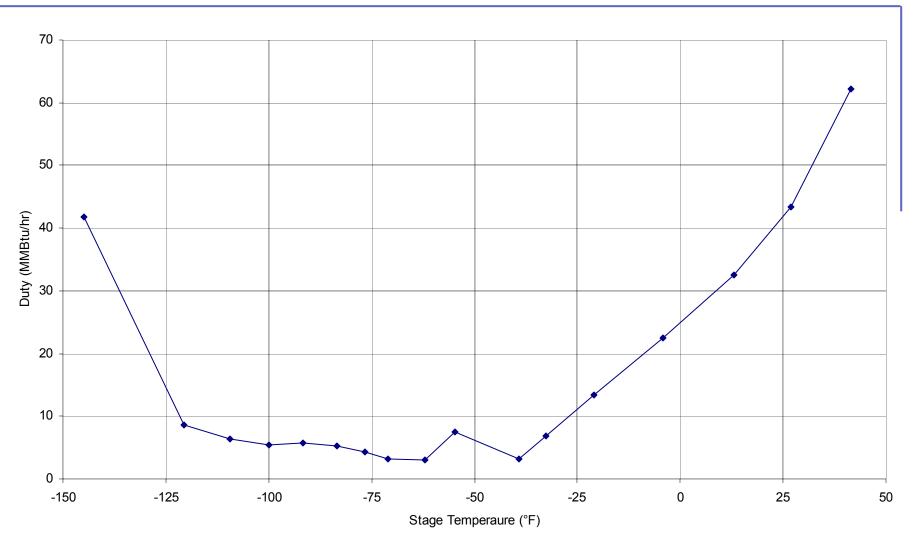
Thermodynamic Analysis of HPA for Ethane Recovery

Equipment	W _{ideal}	W _{shaft}	W _{lost}	% of lost
Exchangers	4,248	0	4,248	13.0
Valves	3,498	0	3,498	10.7
Columns	6,976	0	6,976	21.4
Rotating Equipment	-28,709	-42,501	13,792	42.3
Air Cooler	4,058	0	4,058	12.5
Total	-9,929	-42,501	32,572	100.0

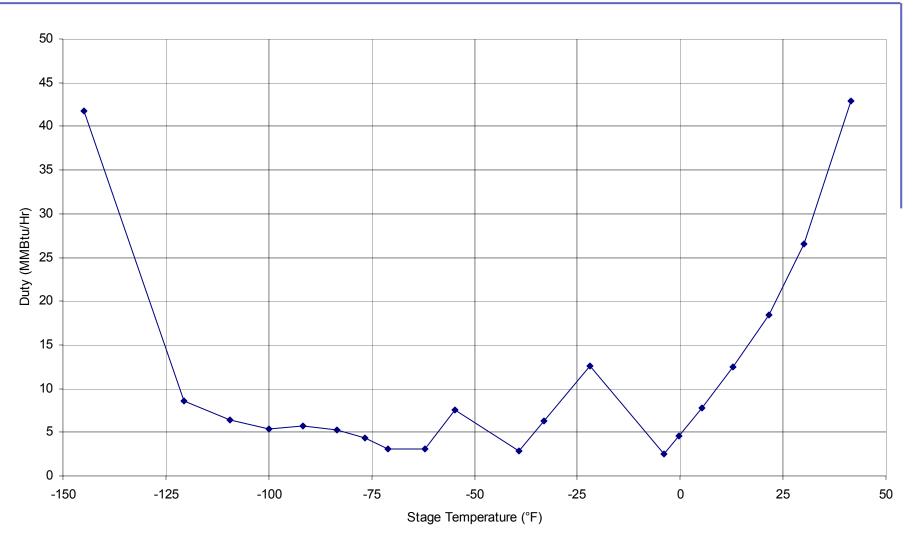

Comparison for the C₂ Recovery Process

Comparison to Conventional GSP Scheme

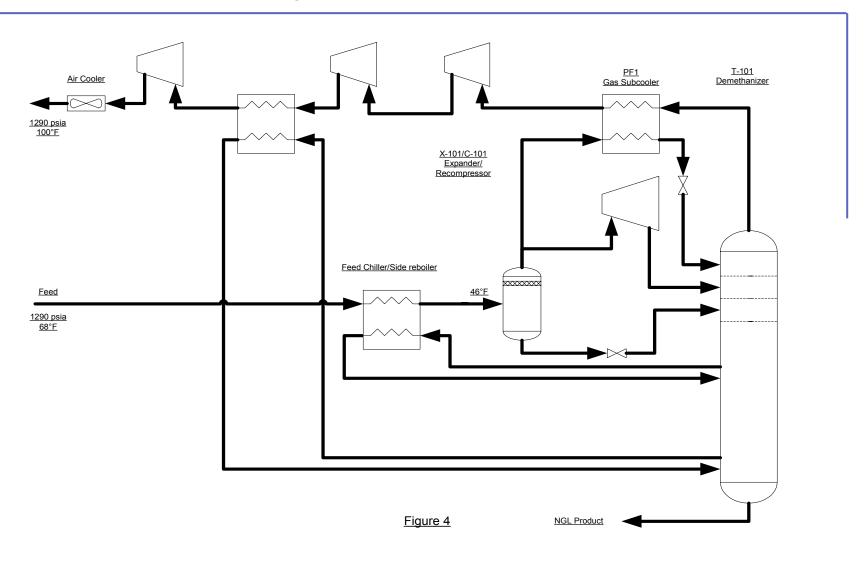
	Conventior	al Scheme	HPA Scheme	
	Lost Work	Percent	Lost Work	Percent
Exchangers	5,773	15.2	4,248	13.0
Valves	4,184	11.0	3,498	10.7
Columns	6,539	17.2	6,976	21.4
Rotating Equipment	16,965	44.6	13,792	42.3
Air Cooler	4,573	12.0	4,058	12.5


Total Lost Work	38,035	32,572
Total Actual Work	47,348	42,501

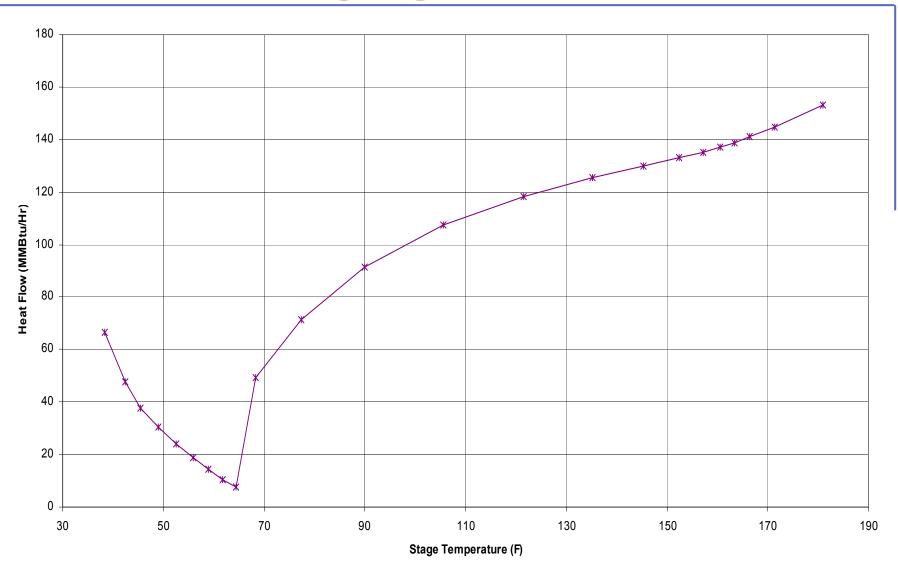
Demethanizer CGCC – No Side Reboilers


ABB

Demethanizer CGCC – 1 Side Reboiler



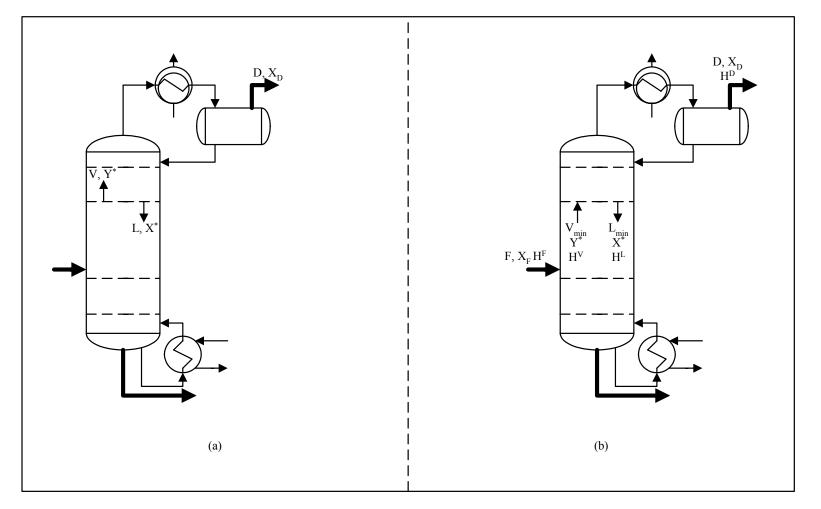
Demethanizer CGCC – 2 Side Reboilers


Application to Ethane Recovery

Conventional Ethane Recovery

More on Column Targeting

ABB


More on Column Targeting

- Minimum Condenser/reboiler duties.
- Percent above minimum reflux/stripping.
- Maximum amount of heat that can be added/removed by a side exchanger.
- A measure of reversibility.

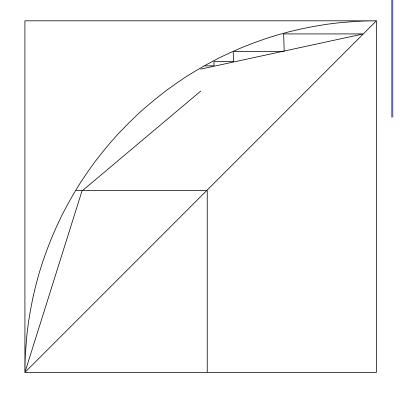
Column Targeting

 Let's consider a simple distillation column with a condenser and a reboiler. By definition, the streams exiting the ideal stage are at equilibrium.

- 43

Column Targeting

An overall material balance yields


 $V_{\min} = D + L_{\min}$

A light key component material balance yields

$$Y^* V_{\min} = X_D D + X^* L_{\min}$$

Solve for L_{min} and V_{min}

$$H_{deficit} = H^V V_{\min} - H^L L_{\min} - H^D D$$

4

ABB Lummus Global Inc.

- The statue was already in the rock...All I had to do was take it out... Michel Angelo
- With current computer technology, thermodynamic analysis of a process is no longer a tedious process.

High Pressure Absorber Process – C₃ Recovery

(Pat. Pending)

Comparison to Traditional Two-Tower Scheme

	Two-Tower Scheme	High Pressure Absorber
Absorber Pressure,psig	440	700
Residue Comp. HP	44,242	30,913
 Overhead Compression 		3,770
 Major Equipment Count 	12	12
Plate-Fin UA / 10 ⁶	5.1	19.3
Cooling/Heating, mmbtu/hr	177	126

High Pressure Absorber Process – C₂ Recovery

Comparison to Traditional Two-Tower Scheme

	Two-Tower Scheme	High Pressure Absorber
 Absorber Pressure,psig 		580
Residue Comp. HP	47,348	42,498
 Overhead Compression 		5,210
Major Equipment Count	12	14
Plate-Fin UA / 10 ⁶	20.6	47.7
 Cooling/Heating, mmbtu/hr 	108	100

CO₂ Freezing Margin,°F

Randall Gas Technologies